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SUMMARY

A viscoplastic constitutive theory is presented for representing the high-
temperature deformation behavior of metal matrix composites. The point of view
taken i1s one of a continuum wherein the composite is considered a material in
fts own right, with its own properties that can be determined for the composite
as a whole. It is presumed that a single preferential (fiber) direction is
identifiable at each material point (continuum element), thereby admitting the
idealization of local transverse isotropy. A key ingredient in this work is
the specification of an experimental program for the complete determination of
the material functions and parameters for characterizing a particular metal
matrix composite. The parameters relating to the strength of anistropy can be
determined through tension and torsion tests on longitudinally and circumferen-
tially reinforced thin-walled tubes. Fundamental aspects of the theory are
explored through a geometric interpretation of some basic features analogous
to those of the classical theory of plasticity.

INTRODUCTION

Structural alloys used in high-temperature applications exhibit complex
thermomechanical behavior that is inherently time-dependent and hereditary, in
the sense that current behavior depends not only on current conditions but also
on thermomechanical history. Considerable attention is being focused now on
metal matrix composite materials that possess strong directional characteris-
tics. In high-temperature applications these materials exhibit all the com-
plexities of conventional alloys (e.g., creep, relaxation, recovery, rate
sensitivity, etc.), and in addition, their strong initial anistropy adds fur-
ther complexities.

Here, we present a continuum theory to represent the high-temperature,
time-dependent, hereditary deformation behavior of materials that are initially
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transversely isotropic. The theory is intended to apply to materials, particu-
larly metallic composites, that can be idealized as psuedohomogeneous continua
with locally definable directional characteristics.

The composite material is viewed as a material in its own right, with its
own properties that can be measured and specified for the composite as a whole.
Experiments for this purpose are outlined in detail in the fourth section of
the paper. This view is intended to satisfy the structural analyst or design
engineer who needs reasonably simple continuum methods of structural analysis
to predict deformation behavior in complex multiaxial situations, particularly
at high temperature where material response is enormously complex. Indeed, the
prediction of component lifetime depends critically on the accurate prediction
of deformation behavior.

The alternative approach is concerned with detailed interactions of the
constituents of the composite: fabrication, bonding, and the relation of the
properties of the composite to the individual properties of the fiber and
matrix. Clearly, such problems are of great importance, and the two approaches
mentioned are not mutually exclusive. Here, however, the continuum point of
view will be emphasized. This is done in the same spirit that the theories of
elasticity, plasticity, viscoelasticity, and others are formulated; on the
basis of macroscopic observations, without direct consideration of the details
of intermolecular, intergranular or interdislocation interactions. Of course,
this is not to imply that qualitative (and quantitative) understanding of
behavior on the microscale should not strongly influence the formulation and
structure of phenomenological theories.

The authors are hopeful this research will complement other ongoing
efforts at NASA Lewis Research Center relating to the high-temperature behavior
of metal matrix composites (refs. 1 to 5). Parts of the present work (believed
essential in representing the time-dependent, hereditary behavior of metals)
may prove helpful in extending the micromechanics equations for the thermal
and mechanical behavior of composites (refs. 1 and 2) to include some important
viscoplastic features.

STATEMENT OF THE THEORY

This work is an extension of that by Robinson (ref. 6) and includes the
former work as a special case. In reference 6, three material parameters over
and above those necessary for representing isotropic viscoplastic behavior were
necessary to account for transverse isotropy. Here, four parameters have to be
specified (fig. 1). The additional parameter arises from a less restrictive
set of assumptions made in the theoretical development. Definition of the
additional parameter leads to more testing to characterize a particular material
but, at the same time, offers the distinct advantage of greater flexibility in
correlating predictions with experimental data.

As in reference 6, the starting point is the assumed existence of a dis-
sipation potential function (refs. 7 to 9); that is
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Here, 93 and «.. denote the components of the applied and internal stress

tensors, respectively, ej denotes the components of the inelastic strain rate
tensor, h is a scalar function of the internal stress, and T 1is the tempera-
ture. Although Q s shown as a function of temperature, only isothermal
deformations will be considered in the following development. Extension to
nonisothermal conditions follows as in reference 10.

In the fully isotropic case, the stress dependence of Q enters only
through the principal invariants of the deviatoric applied and internal
stresses (ref. 10). For transverse isotropy, @ must depend additionally on
the local preferential (fiber) direction denoted by the components of a unit
vector dj (or, as the sense of dj 1is immaterial, on the components of a
symmetric directional tensor didj). Form invariance (objectivity) of Q
requires that it depend only on invariants of the applied and internal
stresses, the directional tensor, and certain products of these tensors
(ref. 11).

A subset of the irreducible set of invariants for form invariance (integ-

rity basis) is used (ref. 11)
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where Lj3 denotes the components of the effective stress, that is, the dif-
ference o; the deviatoric applied and internal stresses. I; relates, as in
the isotropic case, to the effective octahedral shear stress, Ip relates to
the shear component of the effective traction on the plane of isotropy (plane
normal to djy), and I3 corresponds to the normal component of the effective

traction along dj.

Taking Q to be dependent on the appropriate invariants and using equa-
tions (2) and (3), the flow law becomes
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The function f(F) and the material parameters m, B, R, H, and Ky are asso-
ciated with the viscoplastic response (ref. 10); the components of the unit
vector dj (specified in terms of two Euler angles), w, and n, are the four
parameters associated with the direction and strength of transverse isotropy
(fig. 1. Ii, Ié, Ié are invariants of the deviatoric internal stress aij’
similar in form to equations (4) to (6). Note that with w =n =1

equations (7) to (10) reduce to the isotropic forms reported in reference 10.
The details of the derivation of equations (7) to (10) are left to the

references 6, 10, and 11.

For a particular composite material the parameters w and n, designat-
ing the strength of anisotropy, depend on the individual constituent materials
(fiber and matrix) and their volume ratio. Different volume ratios involving
the same constituents are considered different materials. In extending the
present theory to arbitrarily large deformations, the local volume ratio may
change in the course of deformation (as does the local density in an isotropic
material); in which case evolutionary laws for w and n must be specified.
Also, for large deformations and/or rotations, the preferential direction dj
may convect with the material thereby resulting in increasing anisotropic inho-
mogeneity. At this time, large deformations and rotations are not considered.
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SOME FUNDAMENTAL IMPLICATIONS OF THE THEORY

As in earlier works (refs. 6 and 10) F plays the role of a Bingham-Prager
threshold stress function; inelastic response occurs only for F » 0. The sur-
face F = 0 in the stress space encloses stress states that produce elastic
behavior only. Figure 2 shows a typical projection of F = 0 on the o1 - 9

plane for full isotropy (w = n = 1) and the virgin state (aj5 = 0). An infi-
nite family of surfaces F = constant is associated with each inelastic state.
The direction of the inelastic strain rate vector at each stress point on a
given surface is directed normal to the surface. The existence of these sur-
faces and the concept of normality has been demonstrated experimentally for the
isotropic case in reference 12.

Figure 3 shows the corresponding projection of F = 0 on the o1 = %9

plane for the transversely isotropic case with w =n = 2. For each curve
shown, the preferential direction is taken to Tie in the X;, X2 physical
plane with a specified angle ¢ relative to the X; axis. These curves, as
in figure 2, correspond to the virgin state. The shape and orientation of the
surfaces F = 0 (and all surfaces F = constant) now depend on the local pref-
erential direction dj. Note, for instance, that for ¢ = 0, the intercept on
the o) axis is the threshold stress Y|, (figs. 1 and 3), the intercept on

the o,, axis is Yy, and w = (Y /¥7) = 2.

As an interesting and illustrative example, consider the stress path
o = 2022 that is denoted as a dotted line in figures 2 and 3. This is

equivalent to the stress state in a thin-walled tube with closed ends under
internal pressure, where SO is the circumferential or hoop stress and 99

the axial stress. MWith increasing pressure, the stress point eventually
reaches the surface F = 0 and the tube begins to deform inelastically. 1In fig-
ure 2, corresponding to the isotropic tube, inelastic deformation occurs as
indicated by the strain rate vector shown. Normality dictates that the axial
strain rate éz is zero, that is, the tube incurs no inelastic change in

Tength. Contrast this behavior with that of figure 3 with ¢ = 0. This case
represents a circumferentially reinforced tube with a threshold stress in the
circumferential direction that is twice that of the axial direction. As F =
0 is reached and inelasticity begins to occur, the (normal) strain rate vector
has a relatively large axial component €99- The thin tube now experiences

inelastic axial extension. Thus the mode of inelastic deformation has changed
qualitatively with reinforcement. Similar observations are well documented
for time-independent reinforced structures (ref. 13).

EXPERIMENTAL DETERMINATION OF MATERIAL PARAMETERS

Two types of specimens are presumed to be available: thin-walled compos-
ite tubes that are longitudinally reinforced (having a single fiber direction
oriented axially) and those that are circumferentially reinforced (circumferen-
tial fiber orientation). Each type of tube will be loaded either in pure tor-
sion or in pure tension. Although not discussed here, combined tension and
torsion experiments can be used as verification tests to assess the correct-
ness of the multiaxial theory (ref. 12). As is well known, the thin-walled
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tube is an ideal specimen for the development of constitutive relationships in
that it provides a nearly homogeneous and uniform region of stress and strain,
and is statically determinate.

Those parameters relating to_the strength of anisotropy, w and n, and
the threshold strength YL(EKT(4w2 - D1/2) are determined through probing
tests. These tests are designed to determine the inelastic strain rate for a
given stress in the neighborhood of a constant inelastic state, here the ini-
ttal (virgin) state of the material. Indeed, it is the degree of initial
transverse isotropy that is of interest in this study. The probing test, con-
ducted properly, furnishes the desired information without significantly chang-
ing the state.

The material function f(F) and the parameters m, B, R, and H relat-
ing to the viscoplastic properties of the composite are obtained from a combi-
nation of the probing tests and creep tests conducted on longitudinally-
reinforced tubes (or bars). Alternately, in place of the latter tests, one
could use torsion tests on circumferentially reinforced tubes as outlined in
reference 11. The present choice of basing the viscoplastic parameters on uni-
axial creep tests of axially reinforced tubes is motivated by (1) the relative
ease of fabricating longitudinally reinforced tubular specimens over those
reinforced circumferentially and (2) the advantage of characterizing directly
the inelastic response in the critical fiber direction. 1In the case of extreme
reinforcement (e.g., a relatively high volume ratio of very strong fibers that
remain essentially elastic), composite structures are known to be "shear limit-
ed" (ref. 12), and their inelastic behavior is governed largely by the shear
response of the matrix. Under these conditions it may be advantageous to
determine the viscoplastic parameters through the torsional creep tests on cir-
cumferentially reinforced tubes discussed in reference 11.

First, consider a probing test on a longitudinal tube. Pure torsion and
pure tension probes are schematically illustrated as the respective paths o-a
and o-b in the o-t stress space of figure 4(a). Data from such tests take
the form of a sequence of stress and inelastic strain rate pairs, (t,y) along
0-a and (o,e) along o-b. These data can be conveniently plotted as the solid
curves o versus e and T versus vy _in figure 5. Extrapolation of the
o versus e curve in figure 5 to the e = 0 axis furnishes the longitudinal
threshold stress Y.

Specialization of equations (9) and (7) for the path o0-a in figure 4(a)
results in
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in which 1(5012) is the applied shear stress. The corresponding equations
for path o-b are
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where o(Eo]]) is the applied normal stress. Now for F = constant (Q = con-
stant), equations (11) and (13) give
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Thus, in figure 4(a) points (t,y) along o-a and (o,e) along o-b, having
the same dissipation rate, lie on a common F = constant (Q = constant) curve;
for example, the particular points (TA,+A) and (oA,eA) in figure 4(b).

Pairs of points in the plot of figure (5) that 1ie on an F = constant

Tocus are related geometrically such that areas OpEp and TpY, are equal.
Several such pairs can be matched up giving an average value of the ratio
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Probing tests on circumferentially reinforced tubes produce results
entirely analogous to those discussed above for longitudinally reinforced
tubes; counterparts of figures 4(a), 4(b), and 5 can be constructed.

Thus, from equation (15)

The governing equations corresponding to the pure torsional loading of
the circumferential tube are identical to equations (11) and (12). The equa-
tions relating to pure tension of the circumferential tube are
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As before, for F = constant (Q = constant), equations (11) and (20) combine to
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Again, in figure 4(a) points (t,y) along o-a and (o,e) along o-b, with equal
dissipation rates, fall on a common F = constant curve (fig. 4(b)). Simi-
larly, matching pairs of points corresponding to F = constant curves and
averaging gives
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Making use of equation (19), from tests on longitudinally reinforced tubes, and
equation (25), from circumferentially reinforced tubes, results in
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thereby completely characterizing the strength of initial_anisotropy. Recall
that the longitudinal threshold stress YL(EKT(4w2 - H1/2) §5 also known.

Turn now to the determination of the remaining viscoplastic material
parameters. As indicated earlier, although several options are open in this
regard (including torsional tests on circumferentially strengthened tubes as
in ref. 11), the choice here is to consider uniaxial creep tests on longitudi-
nally reinforced thin-walled tubes. This is in addition to the probing tests
on longitudinal tubes already discussed. Typical results of uniaxial creep
tests are illustrated in figure 6.

According to the present theory, the governing equations for the consid-
ered creep conditions are

2
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Here, é(Eé]]) is the axial component of inelastic strain rate, and S(Ea]]) is
the uniaxial component of the internal state variable LI The first of equa-

tions (32) indicates that the function f(F) has been specialized as a power
function characterized by the constants u and n.
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Note for future reference that for F >> 0, equation (30), the flow law,
can be approximated as

¢ = B(o - )] (33)
where
B - ! (34)
w8l - DY

Also, during the early part of primary (transient) creep where s is small
(fig. 6), the evolutionary law equation (31) can be approximated as

s = =x)e (35

The initial creep rate following abrupt application of the stress o
(fig. 6), is expressed by equation (33) with s = 0. That is

Bo2n+1 (36)

Information for determining B and n can be obtained directly from the ini-
tial creep rates as illustrated in figure 6, or alternatively, and more accu-
rately, from the data generated from the probing tests already considered; the
o versus ¢ data illustrated in figure 5. By assuming these data correlate
with equation (36), a plot of log(e) versus log(o) provides both n and B
directly (fig. 7). If correlation with equation (36) is not satisfactory a
different function f(F) may have to be considered in the first of equa-
tions (32). 1In this study, it is assumed that the power law form is appropri-
ate (as has been found for several isotropic alloys) and that n and B can
be determined. With n, B, w, and Y_ known, p is then determined from equa-
tion (34).

Now focus attention on steady state creep information (fig. 6). At
steady state s = 0, so from equation (31)

. E H+1
e = (ﬁ) SS 3N

Steady state creep data provides the pairs (o,eg) but with w, u, Y, and n
known, equation (30) allows sg (the steady state internal stress) to be calcu-
lated for each pair, thus giving the data pairs (eg,sg). Plotting log(eg) ver-

sus log(sg) provides values of (R/H) and m directly as indicated by the
logarithmic form of equation (37) and figure 8. The last of equations (32)
provides the exponent m.
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Attention is now turned to the primary creep stage of the creep tests. As

indicated in equation (35), the evolution of s in the early stages
creep is governed by

Eliminating time and integrating

results in
SB+1 i ﬁ
B+ "€

or in transposed logarithmic form

log(e) = (B + 1)log(s) + log (:—:—1———)
HB + 1)

Now using equation (33) to solve for s yields,

-\1/2n+1
s =0 - &
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and substituting this result into equation (41) gives
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(39)

(40)

(41
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Early primary creep data provides the data triplets (o,e,e) at each time. MWith
B and n known, these data can be plotted (fig. 9) in the form of equa-

tion (43) yielding Q(E + 1) and (B + 1). Using equations (32), 8 and H
can then be determined. Since R/H 1is known from steady state creep data,

individual values for R and H can then be found. Further, by making use
of the second and third of equations (32), the parameters R _and H then are
known. Finally, the viscoplastic parameters Y[ (K1(4w? - D1/2), 4, n, m, B,
R, and H are completely determined, as are the measures of the strength of

transverse isotropy, w and n.

SUMMARY AND CONCLUSIONS

A constitutive theory is presented to represent the hiah-temperature,
time-dependent, hereditary behavior of materials that can be idealized as

17



initially transversely isotropic. In particular, the theory is applicable to
metal matrix composite materials at elevated temperature where their mechanical
behavior includes significant viscoplasticity (e.g., creep, relaxation, thermal
recovery, etc.) and, at the same time these materials are strongly directional.
It is presumed that a single preferential (fiber) direction is identifiable at
each material point thereby admitting the idealization of local transverse iso-
tropy. Although not addressed here, the theory can be extended, at the expense
of some additional complexity, to account for two (or more) identifiable pref-
erential directions at each material point.

The composite is viewed as a continuum in its own right; and detailed
interactive effects of the constituents are not accounted for directly. Of
course, this precludes predictions of detailed phenomena such as failure by
debonding, delamination, and so forth. However, the result is a reasonably
simple multiaxial constitutive theory that is easily implemented into struc-
tural analysis codes for predicting the deformation response of structures sub-
jected to complex thermomechanical loading histories. Because the response in
the presence of material anisotropy is often highly nonintuitive, this theory
provides a valuable tool for the design engineer.

Some fundamental aspects of the theory are explored through geometric
interpretation of some basic features analogous to those of time-independent
plasticity theory. Convexity of the dissipation potential surfaces (F =
constant or Q = constant) is demonstrated, and the shape of the surfaces is
shown to be dependent on the strength and orientation of anisotropy. An exam-
ple involving the response of a thin-walled tube under internal pressure demon-
strates the qualitative changes in the inelastic deformation mode that can
result from directional strengthening (anisotropy).

A key ingredient in the present work is the specification of an experi-
mental procedure for the complete determination of the material parameters for
a particular metal matrix composite. The parameters relating to the strength
of anisotropy are determined through probing experiments on thin-walled tubes
of two kinds; circumferentially reinforced (a single fiber direction oriented
circumferentially) and longitudinally reinforced (axial fiber direction). The
tubes are loaded in both tension and torsion. The parameters relating to the
viscoplastic properties of the composite are determined primarily through uni-
axial creep tests conducted on longitudinally reinforced tubes. Alternately,
as discussed, one could use pure torsion tests on circumferentially reinforced
tubes in place of the uniaxial creep tests. Additional tests are suggested in
order to assess the correctness and accuracy of the theory.
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